Edited by
B. W. Silverman, School of Mathematics, University of Bristol,
and
J. C. Vassilicos, Department of Applied Mathematics and Theoretical
Physics, University of Cambridge
Wavelets: the Key to IntermittentInformation
* Gives a way in to this burgeoning field.
* Covers both theory and applications.
* Shows people who use wavelets in one area
how they are used in another: cross-fertilisation
and interdisciplinarity.
368 pages, 234mm x 156mm
Details
Hardback, 0-19-850716-X
Publication date: August 2000
Description
Readership: Graduates and researchers in
many fields of research, including mathematics,
statistics, computer science, engineering,
economics. This is a genuinely interdisciplinary
area of research.
Wavelets are transforming current thinking
in a wide range of fields by allowing for
intermittent information and non- homogeneous
behaviour. This book examines their increasing
use and potential in many areas, including
physical systems, turbulence, statistics,
mechanical engineering, neural networks,
physiology, vision engineering, signal processing,
economics and astronomy. It should be of
interest to specialists and non-specialists
alike.
Contents/contributors
Daubechies, Guskov, Schroder, & Sweldens:
Wavelets on irregular point sets Arneodo,
Manneville, Muzy, & Roux: Revealing a
lognormal cascading process in turbulent
velocity statistics with wavelet analysis
Nicolleau & Vassilicos: Wavelets for
the study of intermittency and its topology
Silverman: Wavelets in statistics: beyond
the standard assumptions Johnstone: Wavelets
and the theory of non-parametric function-estimation
Candes & Donoho: Ridgelets: a key to
higher-dimensional intermittency?
Nason & Sachs: Wavelets in time-series
analysis Field: Wavelets, vision, and the
statistics of natural scenes
Kingsbury: Image processing with complex
wavelets Pen: Application of wavelets to
filtering of noisy data
Prandoni & Vetterli: Approximation and
compression of piecewise smooth functions
Ramsey: The contribution of wavelets to the
analysis of economic and financial data Newland:
Harmonic wavelets in vibrations and acoustics
Dell'Aglio, L., Universita di Cosenza, Italia (Curatore)
PRISTEM/Storia Number 2
Note di Matematica, Storia, Cultura
1999. IX, 139 page.
88-470-0019-X
La serie intende rispondere all' esigenza
di affermare ed allargare una visione critica,
dinamica ed aperta dei nuovi sviluppi della
matematica, visti alla luce del loro sviluppo
storico. Si tratta quindi di ampliare un
discorso culturale sulle matematiche, in
cui la loro storia rappresenti non solo un
filone di ricerche specializzate, ma uno
strumento importante per un intervento critico
e costruttivo sugli argomenti della ricerca
e dell' insegnamento. Questo secondo volume
? dedicato alla Probabilit? ed ? basato sui
contributi di alcuni protagonisti del pensiero
probabilista (non necessariamente relativi
ad una stessa epoca
storica) e raccoglie, inoltre, particolari
letture
riguardanti lo sviluppo storico di tale disciplina.
Keywords: history of math history of science
math . teaching and
research
Contents: Introduzione.- Le ricerche di Leibniz
sulla matematica
finanziaria e attuariale; E. Knobloch.- La
probabilit? in Keynes; S. Callens.- Alcuni
aspetti attuali
dell'opera di Karl Menger (1902-1985); C.
Alsina, E.
Castineira, J.-M. Terricabras, E. Trillas.-
Il contributo di de
Finetti alla probabilit? e alla statistica;
D.M.
Cifarelli, E. Regazzini.- Note per una storia
dei fondamenti
della probabilit?; D. Costantini.
Series: PRISTEM/Storia.NO. 2
Fields: Mathematics, general
Written for: matematica, biblioteche
tipologia della pubblicazione: Testo specialistico
Publication language: Italienisch
Sauvageot, F., Universite Denis Diderot, Paris, France
Petits problemes de geometries et d'algebre
2000. XII, 172 p.
3-540-65986-2
Cet ouvrage rassemble 29 petits probl?mes
et un probl?me qui ont ?t? pos?s au concours
d'entr?e (? dominante math?matique) ? l'?cole
Normale Sup?rieure de Cachan. Les ?nonc?s
sont corrig?s de mani?re tr?s d?taill?e et
surtout ind?pendemment les uns des autres.
Les corrections sont suivies de commentaires
qui les ?clairent, les prolongent ou les
mettent en liaison avec d'autres. Il ne s'agit
ni v?ritablement d'exercices, ni de cours,
mais plut?t de math?matique organis?e suivant
des th?mes, avec une r?elle volont? de les
pr?senter de facon transverse aux cours dogmatique:
les probl?mes font en g?n?ral appel simultan?ment
? des connaissances vari?es. Ce livre sera
bien ?videmment utile aux ?tudiants et enseignants
des classes pr?paratoires aux grandes ?coles,
mais il est aussi ? recommander aux ?tudiants
pr?parant les concours du C.A.P.E.S.et de
l'agr?gation de math?matiques tant pour les
?preuves ?crites que pour les ?preuves orales.
Series: SCOPOS.VOL. 7
Fields: Geometry; Algebra; Number Theory
Written for: Etudiants de premier cycle francais
(classes pr
paratoires aux grandes coles)
Cat?gorie de l'ouvrage: Manuel 1er cycle
Publication language: French
Fong, Y., National Cheng Kung University, Tainan, Taiwan
Wang, Y., Chinese Academy of Sciences, Beijing, P.Republic
of China
CALCULUS
2000. Approx. 810 pp. 254 figs.
981-3083-52-2
Aimed at first and second year undergraduate
students in
mathematics, the physical sciences, and engineering,
and written by two authorities in the field,
this book will be
required reading for courses that follow
a
'problem-solving' approach to teaching calculus.
The main
philosophy of calculus is presented through
many
examples and applications to explain its
abstract notions and
concepts. A solutions manual demonstrating
the
workings of each example accompanies the
book.
Contents: Preface.- Introduction.- Limit
and Continuity.-
Differentiation.- Application of Derivatives.-
Integration.- Some Special Functions.- Formal
Integrations.- Numerical Integration.- More
on Limits and Improper Integrals.- Infinite
Series.- Polar Coordinates.- Differential
Calculus for Functions of Several Variables.-
Multiple Integrals.- Answers to Selected
Exercises.- Tables.- Index.
For undergraduate students
Book category: Undergraduate Textbook
Publication language: English
Lehmann, E.L., University of California, Berkeley, CA, USA
Casella, G., Cornell University, Ithaca, NY, USA
Theory of Point Estimation
2nd ed. 1998. Corr. 2nd printing 1999. XXVI,
589 pp.
0-387-98502-6
This second, much enlarged edition by Lehmann
and Casella of
Lehmann's classic text on point estimation
maintains the outlook and general style of
the first edition. All
of the topics are updated, while an entirely
new
chapter on Bayesian and hierarchical Bayesian
approaches is
provided, and there is much new material
on
simultaneous estimation. Each chapter concludes
with a Notes
section which contains suggestions for further
study. This is a companion volume to the
second edition of
Lehmann's "Testing Statistical Hypotheses".
Contents: Preparations.- Unbiasedness.- Equivariance.-
Average
Risk Optimality.- Minimaxity and
Admissibility.- Asymptotic Optimality.- References.-
Author
Index.- Subject Index.
Series: Springer Texts in Statistics.
Fields: Statistics, general
Written for: Graduate students, researchers
Book category: Graduate Textbook
Publication language: English
Wilson, R., The Open University, Oxford, UK
Stamping Through Mathematics
2000. Approx. 130 pp. 394 figs., 4 in color.
0-387-98949-8
The astonishing variety and beauty of mathematical
elements in stamp design is brought to life
in this collection of more than 350 stamps,
each reproduced in enlarged format, in full
color. With simple explantory text to accompany
each stamp, the book makes the perfect gift
for students, teachers, and anyone interested
in the fascinating world of stamps, and mathematics.
Contents: Introduction; Preface; 1. Early
mathematics; 2. Egypt;
3. Greek geometry; 4. Plato's Academy; 5.
Euclid and Archimedes; 6. Greek astromony;
7. Ancient board
games; 8. China; 9. Central America; 10.
India;
11. Islamic mathematics: Al-Khwarizmi to
Alhazen; 12. Islamic
astronomy; 13. Islamic mathematics: Avicenna
to
al-Tusi; 14. Late Islamic mathematics; 15.
Europe: the Middle
Ages; 16. The growth of learning; 17. Art
and
mathematics; 18. Chess and Go; 19. The age
of exploration; 20.
Map making; 21. MAthematical instruments;
22.
Globes; 23. Nicolaus Copernicus; 24. Brahe,
Kepler, and Galileo;
25. Calendars and clocks; 26. Calculating
numbers; 27. France: Descartes and Pascal;
28. Isaac Newton; 29:
The Continent: Leibniz to Euler; 30.
Reactions to Newton; 31. Halley's comet;
23. Determination of
longitude; 33. Mathematics in the New World;
34.
Enlightenment France; 35. The French Revolution;
36. Gauss and
non-Euclidian geometry; 37. The development
of algebra; 38. 19th-century astronomy; 39.
Russia; 40. Eastern
Europe; 41. China and Japan; 42. Mathematical
physics 1; 43. Mathematical physics 2; 44.
Albert Einstein; 45.
Mathematical physics 3; 46. Statistics; 47.
20th-century mathematics; .
Fields: Mathematics, general
Written for: teachers
Book category: Nonfiction
Publication language: English