Edited by
B. W. Silverman, School of Mathematics, University of Bristol, and
J. C. Vassilicos, Department of Applied Mathematics and Theoretical Physics, University of Cambridge

Wavelets: the Key to IntermittentInformation

* Gives a way in to this burgeoning field.
* Covers both theory and applications.
* Shows people who use wavelets in one area how they are used in another: cross-fertilisation and interdisciplinarity.

368 pages, 234mm x 156mm
Details
Hardback, 0-19-850716-X
Publication date: August 2000

Description

Readership: Graduates and researchers in many fields of research, including mathematics, statistics, computer science, engineering, economics. This is a genuinely interdisciplinary area of research.

Wavelets are transforming current thinking in a wide range of fields by allowing for intermittent information and non- homogeneous behaviour. This book examines their increasing use and potential in many areas, including physical systems, turbulence, statistics, mechanical engineering, neural networks, physiology, vision engineering, signal processing, economics and astronomy. It should be of interest to specialists and non-specialists alike.

Contents/contributors
Daubechies, Guskov, Schroder, & Sweldens: Wavelets on irregular point sets Arneodo, Manneville, Muzy, & Roux: Revealing a lognormal cascading process in turbulent velocity statistics with wavelet analysis
Nicolleau & Vassilicos: Wavelets for the study of intermittency and its topology Silverman: Wavelets in statistics: beyond the standard assumptions Johnstone: Wavelets and the theory of non-parametric function-estimation Candes & Donoho: Ridgelets: a key to higher-dimensional intermittency?
Nason & Sachs: Wavelets in time-series analysis Field: Wavelets, vision, and the statistics of natural scenes
Kingsbury: Image processing with complex wavelets Pen: Application of wavelets to filtering of noisy data
Prandoni & Vetterli: Approximation and compression of piecewise smooth functions Ramsey: The contribution of wavelets to the analysis of economic and financial data Newland: Harmonic wavelets in vibrations and acoustics


Dell'Aglio, L., Universita di Cosenza, Italia (Curatore)

PRISTEM/Storia Number 2

Note di Matematica, Storia, Cultura

1999. IX, 139 page.
88-470-0019-X

La serie intende rispondere all' esigenza di affermare ed allargare una visione critica, dinamica ed aperta dei nuovi sviluppi della matematica, visti alla luce del loro sviluppo storico. Si tratta quindi di ampliare un discorso culturale sulle matematiche, in cui la loro storia rappresenti non solo un filone di ricerche specializzate, ma uno strumento importante per un intervento critico e costruttivo sugli argomenti della ricerca e dell' insegnamento. Questo secondo volume ? dedicato alla Probabilit? ed ? basato sui contributi di alcuni protagonisti del pensiero
probabilista (non necessariamente relativi ad una stessa epoca storica) e raccoglie, inoltre, particolari letture
riguardanti lo sviluppo storico di tale disciplina.

Keywords: history of math history of science math . teaching and research

Contents: Introduzione.- Le ricerche di Leibniz sulla matematica finanziaria e attuariale; E. Knobloch.- La
probabilit? in Keynes; S. Callens.- Alcuni aspetti attuali dell'opera di Karl Menger (1902-1985); C. Alsina, E.
Castineira, J.-M. Terricabras, E. Trillas.- Il contributo di de Finetti alla probabilit? e alla statistica; D.M.
Cifarelli, E. Regazzini.- Note per una storia dei fondamenti della probabilit?; D. Costantini.

Series: PRISTEM/Storia.NO. 2
Fields: Mathematics, general
Written for: matematica, biblioteche
tipologia della pubblicazione: Testo specialistico
Publication language: Italienisch

Sauvageot, F., Universite Denis Diderot, Paris, France

Petits problemes de geometries et d'algebre

2000. XII, 172 p.
3-540-65986-2

Cet ouvrage rassemble 29 petits probl?mes et un probl?me qui ont ?t? pos?s au concours d'entr?e (? dominante math?matique) ? l'?cole Normale Sup?rieure de Cachan. Les ?nonc?s sont corrig?s de mani?re tr?s d?taill?e et surtout ind?pendemment les uns des autres. Les corrections sont suivies de commentaires qui les ?clairent, les prolongent ou les mettent en liaison avec d'autres. Il ne s'agit ni v?ritablement d'exercices, ni de cours, mais plut?t de math?matique organis?e suivant des th?mes, avec une r?elle volont? de les pr?senter de facon transverse aux cours dogmatique: les probl?mes font en g?n?ral appel simultan?ment ? des connaissances vari?es. Ce livre sera bien ?videmment utile aux ?tudiants et enseignants des classes pr?paratoires aux grandes ?coles, mais il est aussi ? recommander aux ?tudiants pr?parant les concours du C.A.P.E.S.et de l'agr?gation de math?matiques tant pour les ?preuves ?crites que pour les ?preuves orales.

Series: SCOPOS.VOL. 7
Fields: Geometry; Algebra; Number Theory

Written for: Etudiants de premier cycle francais (classes pr paratoires aux grandes coles)
Cat?gorie de l'ouvrage: Manuel 1er cycle
Publication language: French


Fong, Y., National Cheng Kung University, Tainan, Taiwan
Wang, Y., Chinese Academy of Sciences, Beijing, P.Republic of China

CALCULUS

2000. Approx. 810 pp. 254 figs.
981-3083-52-2

Aimed at first and second year undergraduate students in mathematics, the physical sciences, and engineering,
and written by two authorities in the field, this book will be required reading for courses that follow a
'problem-solving' approach to teaching calculus. The main philosophy of calculus is presented through many
examples and applications to explain its abstract notions and concepts. A solutions manual demonstrating the
workings of each example accompanies the book.

Contents: Preface.- Introduction.- Limit and Continuity.- Differentiation.- Application of Derivatives.-
Integration.- Some Special Functions.- Formal Integrations.- Numerical Integration.- More on Limits and Improper Integrals.- Infinite Series.- Polar Coordinates.- Differential Calculus for Functions of Several Variables.- Multiple Integrals.- Answers to Selected Exercises.- Tables.- Index.

For undergraduate students
Book category: Undergraduate Textbook
Publication language: English


Lehmann, E.L., University of California, Berkeley, CA, USA
Casella, G., Cornell University, Ithaca, NY, USA

Theory of Point Estimation

2nd ed. 1998. Corr. 2nd printing 1999. XXVI, 589 pp.
0-387-98502-6

This second, much enlarged edition by Lehmann and Casella of Lehmann's classic text on point estimation
maintains the outlook and general style of the first edition. All of the topics are updated, while an entirely new
chapter on Bayesian and hierarchical Bayesian approaches is provided, and there is much new material on
simultaneous estimation. Each chapter concludes with a Notes section which contains suggestions for further
study. This is a companion volume to the second edition of Lehmann's "Testing Statistical Hypotheses".

Contents: Preparations.- Unbiasedness.- Equivariance.- Average Risk Optimality.- Minimaxity and
Admissibility.- Asymptotic Optimality.- References.- Author Index.- Subject Index.

Series: Springer Texts in Statistics.
Fields: Statistics, general
Written for: Graduate students, researchers
Book category: Graduate Textbook
Publication language: English

Wilson, R., The Open University, Oxford, UK

Stamping Through Mathematics

2000. Approx. 130 pp. 394 figs., 4 in color.
0-387-98949-8

The astonishing variety and beauty of mathematical elements in stamp design is brought to life in this collection of more than 350 stamps, each reproduced in enlarged format, in full color. With simple explantory text to accompany each stamp, the book makes the perfect gift for students, teachers, and anyone interested in the fascinating world of stamps, and mathematics.

Contents: Introduction; Preface; 1. Early mathematics; 2. Egypt; 3. Greek geometry; 4. Plato's Academy; 5.
Euclid and Archimedes; 6. Greek astromony; 7. Ancient board games; 8. China; 9. Central America; 10. India;
11. Islamic mathematics: Al-Khwarizmi to Alhazen; 12. Islamic astronomy; 13. Islamic mathematics: Avicenna to
al-Tusi; 14. Late Islamic mathematics; 15. Europe: the Middle Ages; 16. The growth of learning; 17. Art and
mathematics; 18. Chess and Go; 19. The age of exploration; 20. Map making; 21. MAthematical instruments; 22.
Globes; 23. Nicolaus Copernicus; 24. Brahe, Kepler, and Galileo; 25. Calendars and clocks; 26. Calculating
numbers; 27. France: Descartes and Pascal; 28. Isaac Newton; 29: The Continent: Leibniz to Euler; 30.
Reactions to Newton; 31. Halley's comet; 23. Determination of longitude; 33. Mathematics in the New World; 34.
Enlightenment France; 35. The French Revolution; 36. Gauss and non-Euclidian geometry; 37. The development
of algebra; 38. 19th-century astronomy; 39. Russia; 40. Eastern Europe; 41. China and Japan; 42. Mathematical
physics 1; 43. Mathematical physics 2; 44. Albert Einstein; 45. Mathematical physics 3; 46. Statistics; 47.
20th-century mathematics; .

Fields: Mathematics, general
Written for: teachers
Book category: Nonfiction
Publication language: English