Arnold L. Rosenberg / Dept. of Computer Science,
University of Massachusetts, Amherst, USA
Lenwood S. Heath / Dept. of Computer Science,
Virginia Polytechnic Institute, Blacksburg,
USA
Graph Separators, with Applications
Graph Separators with Applications is devoted
to techniques
for obtaining upper and lower bounds on the
sizes of graph
separators ・upper bounds being obtained
via decomposition
algorithms. The book surveys the main approaches
to obtaining
good graph separations, while the main focus
of the book is on
techniques for deriving lower bounds on the
sizes of graph
separators. This asymmetry in focus reflects
our perception that
the work on upper bounds, or algorithms,
for graph separation is
much better represented in the standard theory
literature than is
the work on lower bounds, which we perceive
as being much more
scattered throughout the literature on application
areas. Given
the multitude of notions of graph separator
that have been
developed and studied over the past (roughly)
three decades,
there is a need for a central, theory-oriented
repository for the
mass of results. The need is absolutely critical
in the area of
lower-bound techniques for graph separators,
since these
techniques have virtually never appeared
in articles having the
word `separator' or any of its near-synonyms
in the title. Graph
Separators with Applications fills this need.
Contents
Preface. Capsule Biographies of the Authors.
1. A Technical
Introduction. 2. Applications of Graph Separators.
3. Upper Bound
Techniques. 4. Lower-Bound Techniques. A.
Applications of Graph
Separators, Revisited. Bibliography. Index.
Kluwer Academic/Plenum Publishers
Hardbound, ISBN 0-306-46464-0
June 2001, 264 pp.
Chatterji, S.D., Ecole Polytechnique Federale,
Lausanne; Remmert, R., Universitat Munster; Scharlau,
W., Universitat Munster (Hrsg.)
Felix Hausdorff - Gesammelte Werke
Band IV: Analysis, Algebra und Zahlentheorie
2001. XIX, 554 S. Geb.
3-540-41760-5
Felix Hausdorff gehort zu den herausragenden
Mathematikern der
ersten Halfte des 20. Jahrhunderts. Eine
Gesamtausgabe seiner
Werke galt lange als Desideratum. Die auf
8 Bande veranschlagte
Edition wird Hausdorffs gesamtes publiziertes
Opus enthalten,
ferner eine Reihe bemerkenswerter Stucke
aus dem umfangreichen
wissenschaftlichen Nachlas. Alle Texte werden
von Fachleuten auf
den einzelnen Gebieten sorgfaltig kommentiert;
an dieser Arbeit
sind mehr als 20 Mathematiker, Mathematikhistoriker,
Astronomen,
Philosophen und Literaturwissenschaftler
aus vier Staaten
beteiligt. Der vorliegende Band IV enthalt
Hausdorffs Arbeiten
zur Analysis, Algebra und Zahlentheorie,
darunter die klassischen
auch heute noch vielzitierten Texte zu Hausdorff-Mas
und
Hausdorff-Dimension und zum Hausdorffschen
Kugelparadoxon. Aus
dem Nachlas werden 19 Faszikel publiziert,
ferner einige
interessante Briefe.
Schlagworte: Analysis, Algebra, Zahlentheorie,
Geschichte der
Mathematik
Inhalt: Aus dem Inhalt: Teil I: Analysis.-
A. Veroffentlichte
Arbeiten: Bemerkungen uber den Inhalt von
Punktmengen. Dimension
und auserers Mas. Der Wertvorrat einer Bilinearform.
Zur
Verteilung der fortsetzbaren Potenzreihen.
Uber halbstetige
Funktionen. B. Arbeiten aus dem Nachlas:
Beispiele divergenter
trigonometrischer Reihen. Metrische und topologische
Raume.
Erweiterung des Systems der messbaren Mengen.
Die Laguerreschen
Polynome. Teil II: Algebra.- Zur Theorie
der Systeme complexer
Zahlen. Die symbolische Exponentialformel
in der Gruppentheorie.
Lipschitzsche Zahlensysteme und Studysche
Nablafunktionen. Teil
III: Zahlentheorie.- Zur Hilbertschen Losung
des Waringschen
Problems. E.Landau, Handbuch der Lehre von
der Verteilung der
Primzahlen. Schriftenverzeichnis Hausdorffs.
Register.
Ganzha, V.G., Technische Universitat Munchen,
Germany Mayr, E.W., Technische Universitat Munchen,
Germany Vorozhtsov, E.V., Russian Academy
of Sciences, Novosibirsk, Russia (Eds.)
Computer Algebra in Scientific Computing
CASC '01
2001. XII, 556 pp. Hardcover
3-540-42355-9
The book covers various topics of computer
algebra methods,
algorithms and software applied to scientific
computing. An
important topic presented in the book, which
may be of interest
to researchers and engineers, is the application
of computer
algebra methods to the development of new
efficient analytic and
numerical solvers, both for ordinary and
partial differential
equations. A specific feature of the book
is an intense use of
advanced software systems such as Mathematica,
Maple etc. for the
solution of problems as outlined above and
for the industrial
application of computer algebra for simulation.
The book will be
useful for researchers and engineers who
apply advanced computer
algebra methods for the solution of their
problems.
Keywords: Computer algebra, scientific computing,
symbolic
computation
Rordam, M., University of Copenhagen, Denmark
Stormer, E., University of Oslo, Norway
Classification of Nuclear C*-Algebras. Entropy
in Operator
Algebras
2001. Approx. 415 pp. Hardcover
3-540-42305-2
This EMS volume consists of two parts, written
by leading
scientists in the field of operator algebras
and non-commutative
geometry. The first part, written by M.Rordam,
is on Elliott's
classification program for nuclear C*-algebras.
The emphasis is
on the work of Kirchberg and the spectacular
results by Kirchberg
and Phillips giving a nearly complete classification,
in terms of
K-theoretic invariants, in the purely infinite
case. This part of
the program is described with almost full
proofs beginning with
Kirchberg's tensor product theorems and Kirchberg's
embedding
theorem for exact C*-algebras. The classification
of finite
simple C*-algebras starting with AF-algebras,
and continuing with
AT- and AH-algebras is covered, but mostly
without proofs. The
second part, written by E.Stormer, is a survey
of the theory of
of noncommutative entropy of automorphisms
of C*-algebras and von
Neumann algebras from its initiation by Connes
and Stormer in
1975 till 2001.
Keywords: C * -algebras, classifications,
K-theory, entropy
Contents: Part I. Classification of Nuclear,
Simple C*-Algebras,
M.Rordam: 1. AF-algebras and their Classification.-
2.
Preliminaries.- 3. Classification results
for finite C*-algebras.-
4. Purely infinite simple C*-algebras.- 5.
On O 2.- 6. Nuclear
and exact C*-algebras and exact C*-algebras.-
7. Tensor products
by O 2 and O Oinfty.- 8. Classification of
Kirchberg algebras.-
Part II. A Survey of Noncommutative Dynamical
Entropy, E. Stormer:
Introduction.- 1. Entropy in finite von Neumann
algebras.- 2.
Entropy in C*-algebras.- 3. Bogoliubov automorphisms.-
4. The
entropy of Sauvageot and Thouvenot.- 5. Voiculescu's
approximation entropies.- 6. Crossed products.-
7. Free products.-
8. Binary shifts.- 9. Generators.- 10. The
variational principle.
Series: Encyclopaedia of Mathematical Sciences.
VOL. 126
Albert, J., Bowling Green State University, Bowling Green, OH, USA
Bennett, J.M., Bellcore, Fair Haven, NJ,
USA
Curve Ball
Baseball, Statistics, and the Role of Chance
in the Game
2001. XVIII, 350 pp. Softcover
0-387-98816-5
A look at baseball data from a statistical
modeling perspective!
There is a fascination among baseball fans
and the media to
collect data on every imaginable event during
a baseball game and
this book addresses a number of questions
that are of interest to
many baseball fans. These include how to
rate players, predict
the outcome of a game or the attainment of
an achievement, making
sense of situational data, and deciding the
most valuable players
in the World Series. Aimed at a general audience,
the text does
not assume any prior background in probability
or statistics,
although a knowledge of high school abgebra
will be helpful.
Contents: Introduction.- Simple Models.-
Situational Effects.-
How Do We Evaluate Players.- Clutch Hitting.-
Streakiness.- Does
The Best Team Win?- Predicting Results.-
Wrap-Up.
Calude, C.S., / Dinneen, M.J., University of Auckland, New Zealand
Sburlan, S., Ovidius University, Constanta,
Romania (Eds.)
Combinatorics, Computability and Logic
Proceedings of the Third International Conference
on
Combinatorics, Computability and Logic (DMTCS'01)
2001. X, 251 pp. Softcover
1-85233-526-2
This volume contains the papers presented
at the Third Discrete
Mathematics and Theoretical Computer Science
Conference (DMTCS1),
which was held at 'Ovidius'University Constantza,
Romania in July
2001.
The conference was open to all areas of discrete
mathematics and
theoretical computer science, and the papers
contained within
this volume cover topics such as: abstract
data types and
specifications; algorithms and data structures;
automata and
formal languages; computability, complexity
and constructive
mathematics; discrete mathematics, combinatorial
computing and
category theory; logic, nonmonotonic logic
and hybrid systems;
molecular computing.
Contents: Invited papers: Early Computer
Science Adventures of a
Mathematician. Sequentially Continuity in
Constructive
Mathematics. Recursive Functions: An Archeological
Look. The
Number of Graphs and Digraphs with a Fixed
Diameter and
Connectivity.- Contributed papers: Some Results
for Some
Conjectures in Addition Chains. A Highly
Random Number. Dini's
Theorem: a Constructive Case Study. Even
Linear Simple Matrix
Languages: Formal Language Aspects. Pseudo-BCK
Algebras: An
Extension of BCK Algebras. P -Immune Sets
with Holes Lack Self-Reducibility
Properties. Lex Ideals of Generalized MV-Algebras.
Armstrong
Systems on Ordered Sets. Unicycle Bipartite
Graphs with Only
Uniquely Restricted Maximum Matchings. On
Relax-ability of Word-Order
by D-grammars. On the Structure of Linear
Cellular Automata.
Monotonically Computable Real Numbers. Apartness
as a Relation
Between Subsets. How Large is the Set of
Disjunctive Sequences? A
Loopless Generation of Bitstrings without
p Consecutive Ones.
Greedy Algorithms for the Lower and Upper
Chromatic Numbers.
Series: Discrete Mathematics and Theoretical
Computer Science.