Auteur(s): Patrick R. Girard

QUATERNIONS, ALGEBRE DE CLIFFORD ET PHYSIQUE RELATIVISTE

Sujet

L'utilisation de l'algebre de Clifford en physique mathematique et dans les sciences de l'ingenieur a connu un essor rapide ces dernieres annees. Alors que les developpements recents ont privilegie l'approche geometrique, l'auteur s'interesse quant a lui a l'approche algebrique, qui peut etre introduite comme un produit tensoriel d'algebres de quaternions et qui fournit un calcul unifie, relativiste pour une grande partie de la physique.

Originalite

Cet ouvrage propose une introduction pedagogique a ce nouveau calcul, a partir du groupe des quaternions, avec des applications principalement dans les domaines de la relativite restreinte, de l'electromagnetisme classique et de la relativite generale.

Public

Cet ouvrage s'adresse aux etudiants et chercheurs en physique et en sciences de l'ingenieur, interesses par l'utilisation de ce nouveau calcul de Clifford quaternionien.

Contenu

Introduction - Quaternions - Groupe de rotation - Quaternions complexes - Algebre de Clifford - Groupes de symetrie - Relativite restreinte - Electromagnetisme classique - Relativite generale - Conclusions - Solutions - Bibliographie - Index.

ISBN: 2-88074-606-X
2004
184 pages
16x24cm
broche.


*

Auteur(s): Constantin Piron

METHODES QUANTIQUES

Sujet

Cet ouvrage constitue une introduction a la theorie des champs quantiques tres differente des habituels exposes le plus souvent formels. Apres avoir defini pas a pas les concepts mathematiques necessaires au developpement de cette theorie, quelques exemples classiques sont traites en detail. L'espace de Fock est ensuite expose sans recours a des coordonnees particulieres. Cette formulation generale permet alors d'introduire correctement les champs quantiques des phonons et les photons. L'ouvrage se clot par un expose de la theorie de la diffusion. Les problemes exposes, avec leurs corriges, constituent d'utiles complements au texte.

Originalite

Ouvrage particulierement clair et didactique, illustre de nombreux exemples et exercices corriges, et redige par l'un des specialistes francophones en la matiere.

Public

Etudiants, professeurs, chercheurs et ingenieurs en physique et mecanique quantique.

Contenu

Avant-propos. Theorie des champs: Introduction - Problemes - Principe de Cartan - Problemes - Champ de Maxwell - Problemes - Champ de Schrodinger-Pauli - Problemes - Champ de Dirac - Problemes - Electrodynamique - Problemes - References.
Problemes a N corps: Introduction - Problemes - Formalisme - Problemes - Chaine quantique - Problemes - Champ transverse de Maxwell - Problemes - References.
Diffusion: Introduction - Problemes - Matrice S - Problemes - References. Corriges des problemes. Index.

ISBN: 2-88074-611-6
2005
104 pages
15x21cm
thermocolle.

Patrick Bahls (University of Illinois, Urbana-Champaign, USA)

THE ISOMORPHISM PROBLEM IN COXETER GROUPS

The book is the first to give a comprehensive overview of the techniques and tools currently being used in the study of combinatorial problems in Coxeter groups. It is self-contained, and accessible even to advanced undergraduate students of mathematics.
The primary purpose of the book is to highlight approximations to the difficult isomorphism problem in Coxeter groups. A number of theorems relating to this problem are stated and proven. Most of the results addressed here concern conditions which can be seen as varying degrees of uniqueness of representations of Coxeter groups. Throughout the investigation, the readers are introduced to a large number of tools in the theory of Coxeter groups, drawn from dozens of recent articles by prominent researchers in geometric and combinatorial group theory, among other fields. As the central problem of the book may in fact be solved soon, the book aims to go further, providing the readers with many techniques that can be used to answer more general questions. The readers are challenged to practice those techniques by solving exercises, a list of which concludes each chapter.

Contents:

Preliminaries on Coxeter Groups
Further Properties of Coxeter Groups
Rigidity
In the Beginning: Some Early Results
Even Coxeter Groups
More General Groups
Refinements and Generalizations: Automorphisms and Artin Groups

Readership: Graduate students in group theory and linear algebra, mathematicians.

192pp Pub. date: Mar 2005
ISBN 1-86094-554-6

edited by Haim Brezis (Universite Pierre et Marie Curie, France)
& Tatsien Li (Fudan University, China)

GINZBURG-LANDAU VORTICES

The Ginzburg?Landau equation as a mathematical model of superconductors has become an extremely useful tool in many areas of physics where vortices carrying a topological charge appear. The remarkable progress in the mathematical understanding of this equation involves a combined use of mathematical tools from many branches of mathematics. The Ginzburg?Landau model has been an amazing source of new problems and new ideas in analysis, geometry and topology. This collection will meet the urgent needs of the specialists, scholars and graduate students working in this area or related areas.

Contents:

Bifurcation Problems for Ginzburg?Landau Equations and Applications to Bose Einstein Condensates (A Aftalion)
Vortex Analysis of the Ginzburg?Landau Model of Superconductivity (E Sandier)
On Singular Perturbation Problems Involving a gCircular-Wellh Potential (I Shafrir)
Existence Results on Ginzburg?Landau Equations (F Zhou)
A Survey on Ginzburg?Landau Vortices of Superconducting Thin Films (S Ding)
On the Hydro-Dynamic Limit of Ginzburg?Landau Wave Vortices (F Lin & P Zhang)
Singular Sets of the Landau?Lifshitz System (X-G Liu)
Analysis of Ginzburg?Landau Models for Type I Superconductivity (F Yi)
Ferromagnets and Landau?Lifshitz Equation (J Zhai)

Readership: Specialists, scholars and graduate students in applied mathematics, applied science and related areas.

210pp (approx.) Pub. date: Scheduled Summer 2005
ISBN 981-256-203-6

edited by Jianqing Fan (Princeton University, USA)
& Gang Li (University of California at Los Angeles, USA)

CONTEMPORARY MULTIVARIATE ANALYSIS AND DESIGN OF EXPERIMENTS
In Celebration of Professor Kai-Tai Fang's 65th Birthday

This book furthers new and exciting developments in experimental designs, multivariate analysis, biostatistics, model selection and related subjects. It features articles contributed by many prominent and active figures in their fields. These articles cover a wide array of important issues in modern statistical theory, methods and their applications. Distinctive features of the collections of articles are their coherence and advance in knowledge discoveries.

Contents:

Multivariate Analysis
Experimental Design
Advances in Biostatistics
Advance in Statistics

Readership: Researchers and graduate students in multivariate analysis, experimental designs and quasi-Monte Carlo methods.

468pp Pub. date: Mar 2005
ISBN 981-256-120-X