Memoires de la SMF 103 (2005), vi+124 pages
Resume :
Un feuilletage holomorphe sur une variete compacte complexe M est
un -feuilletage s'il existe une action d'un groupe complexe G
telle que les feuilles generiques de soient les orbites de G. On
s'interesse essentiellement au cas de la codimension un sur les
espaces projectifs dans l'esprit de la theorie des invariants qui
ici peuvent etre transcendants. On s'attache a presenter des
exemples et des resultats de classification en petite dimension.
Mots clefs : Feuilletage holomorphe, action de groupes, theorie
des invariants, calcul formel
Abstract:
Foliations and group actions on projective spaces
A holomorphic foliation on a compact complex manifold M is said
to be an -foliation if there exists an action of a complex Lie
group G such that the generic leaf of coincides with the generic
orbit of G. We study -foliations of codimension one, in
particular in projective space, in the spirit of classical
invariant theory, but here the invariants are sometimes
transcendental ones. We give a list of examples and general
properties. Some classification results are obtained in low
dimensions.
Key words: Holomorphic foliation, group action, invariant theory,
symbolic computation
Class. math. : 37F75, 32M05, 32M17, 32M25, 32S65
ISBN : 2-85629-182-1
Asterisque 301 (2005), vi+140 pages
Resume :
Le but de ce livre est d'exposer la tres belle theorie de
l'homotopie developpee par Grothendieck dans á A la poursuite
des champs â . Il s'agit de caracteriser les categories de
prefaisceaux qui permettent de modeliser les types d'homotopie,
generalisant ainsi la theorie des ensembles simpliciaux. Les
criteres degages par Grothendieck montrent que de telles
categories, appelees des modelisateurs elementaires , abondent.
On expose une construction categorique des extensions de Kan
homotopiques a gauche, generalisant une construction des
colimites homotopiques par Thomason. On etudie deux classes
remarquables de foncteurs, les foncteurs propres et les foncteurs
lisses , notions duales l'une de l'autre. Ces foncteurs sont
caracterises par des proprietes cohomologiques, inspirees des
theoremes de changement de base propre ou lisse, en geometrie
algebrique.
Mots clefs :
Aspherique, categorie test, colimite homotopique, ensemble
simplicial, equivalence faible, extension de Kan homotopique,
foncteur lisse, foncteur propre, homotopie, localisation,
modelisateur, prefaisceau
Abstract:
Grothendieck's homotopy theory
The aim of this book is to explain the very beautiful homotopy
theory developed by Grothendieck in á Pursuing Stacks â . The
question is to characterize categories of presheaves that
modelize homotopy types, thus generalizing the theory of
simplicial sets. The criteria discovered by Grothendieck show
that there are pretty many such categories, called elementary
modelizers . We describe a categorical construction of left
homotopy Kan extensions, generalizing a construction of homotopy
colimits by Thomason. We study two remarkable classes of
functors, proper and smooth functors, these two notions being
mutually dual. These functors are characterized by cohomological
properties inspired by the proper or smooth base change theorem
in algebraic geometry.
Key words:
Aspheric, homotopy, homotopy colimit, homotopy Kan extension,
localization, modelizer, presheaf, proper functor, simplicial
set, smooth functor, test category, weak equivalence
Class. math. : 14F20, 14F35, 18B25, 18F20, 18G10, 18G30, 18G50,
18G55, 55P10, 55P15, 55P60, 55Q05, 55U10, 55U35, 55U40
ISBN : 2-85629-181-3
Memoires de la SMF 101/102 (2005), vi+208 pages
Resume :
Inegalites de Strichartz pour l'equation de Schrodinger a
coefficients variables
On demontre les inegalites de Strichartz (locales en temps) pour
l'ensemble des indices donnes par l'invariance d'echelle (sauf le
point final) pour des perturbations asymptotiquement plates et
non captantes du laplacien usuel de , . Le point principal de la
preuve, a savoir l'estimation de dispersion, est obtenu en
construisant une parametrixe. L'outil principal de cette
construction est la theorie de la transformation de FBI
construite par Sjostrand.
Mots clefs : Inegalites de Strichartz, equations de Schrodinger,
inegalites de dispersion, transformation de FBI, theorie de
Sjostrand
Abstract:
We prove the (local in time) Strichartz estimates (for the full
range of parameters given by the scaling unless the end point)
for asymptotically flat and non trapping perturbations of the
flat Laplacian in , . The main point of the proof, namely the
dispersion estimate, is obtained in constructing a parametrix.
The main tool for this construction is the use of the FBI
transform.
Key words: Strichartz estimates, Schrodinger equations,
dispersive estimates, FBI transform, Sjostrand's theory
Class. math. : 35A17, 35A22, 35Q40, 35Q55
ISBN : 2-85629-180-5
Hardback (ISBN-13: 9780883857465 | ISBN-10: 0883857464)
available from June 2006
The object of this book is to show how visualization techniques
may be employed to produce pictures that have both mathematical
and pedagogical interest. Mathematical drawings related to proofs
have been produced since antiquity in China, Arabia, Greece and
India but only in the last thirty years there has been a growing
interest in so-called eproofs without words.f In this book
the authors show that behind most of the pictures eprovingf
mathematical relations are some well-understood methods. The
first part of the book consists of twenty short chapters, each
one describing a method to visualize some mathematical idea (a
proof, a concept, an operation,...) and several applications to
concrete cases. Following this the book examines general
pedagogical considerations concerning the development of visual
thinking, practical approaches for making visualizations in the
classroom and a discussion of the role that hands-on material
play in this process.
Contents
Introduction; Part I. Visualizing mathematics by creating
pictures: 1. Representing numbers by graphical elements; 2.
Representing numbers by lengths of segments; 3. Representing
numbers by areas of plane figures; 4. Representing numbers by
volumes of bodies; 5. Identifying key elements; 6. Employing
isometry; 7. Employing similarity; 8. Area preserving
transformations; 9. Escaping from the plane; 10. Overlaying
tiles; 11. Playing with several copies; 12. Sequential frames; 13.
Geometric dissections; 14. Moving frames; 15. Iterative
procedures; 16. Introducing colors; 17. Visualization by
inclusion; 18. Ingenuity in 3D; 19. Using 3D models; 20.
Combining techniques; Part II. Visualization in the classroom;
Part III. Hints and solutions to the challenges; References;
Index.