Arnold, Vladimir I.

Yesterday and Long Ago

Original Russian edition published by PHASIS, Moscow, Russia, 2006. English edition jointly published with PHASIS.
2007, XIV, 229 p., 43 illus., Hardcover
ISBN-10: 3-540-28734-5

About this book

This is a charming collection of essays on life and science, by one of the leading mathematicians of our day. Vladimir Igorevich Arnold is renowned for his achievements in mathematics, and nearly as famous for his informal teaching style, and for the clarity and accessibility of his writing. The chapter headings convey Arnoldfs humor and restless imagination. A few examples: My first recollections; The combinatorics of Plutarch; The topology of surfaces according to Alexander of Macedon; Catching a pike in Cambridge. Yesterday and Long Ago offers a rare opportunity to appreciate the life and work of one of the worldfs outstanding living mathematicians.

Table of contents

Preface.- My first recollections.- The North-West direction.- Vera Stepanovna Arnold (nee Zhitkova).- First scientific reminiscences.- The Arnold family.-A household library.- The axiomatic method.- The color of a meridian.- School years.- It is not easy to keep a secret.- The temple of science.- Who is the winner?- State examination on Marxism.- Goodwill.- The thermal conductivity equation.- Lavoisier and French mathematics during the Revolution.- Queen Eleanor, Rosamund, and labyrinth theory.- Place de Vogueses.- "Champel Sea".- Neutrinos, neutrons, and Bruno Pontecorvo.- From Pareto to Arzamas.- How to distinguish good and bad mathematical works.- The combinatorics of Plutarch.- Galilei.- The topology of surfaces according to Alexander of Macedon.- Snake-hunting.- Suputinskii nature reserve.- Pheasants of the Vincent forest.- The guillotine and Marie-Antoinette.- Damiensfs sufferings.- Queen Marguerite and the kingdom of law.- Jeanne dfArc as a witch and as a saint.- Ravailliac, French cuisine, and traffic jams.- Anne Yaroslavna, Princess of Russia.- Gennady of Novgorod and education in Russia under Ivan III.- Catherine I and the Prut river campaign.- Catherine II and I.I.Betskoi.- An order of Catherine II.- Radishchev.- The Crimean war.- Princess Dashkova and parachutes.- The desecrated host and abstract algebra.- France ? Guinea ? India.- Julius Caesar and Gallians: protecting Rome from Germans.- A planning department.- Mountain lions over Stanford.- The Pocha river and the dog Shnura.- Hong Kong.- The Pongoma river and the Solovetskie islands.- Brazilian tours.- Leibnitz as Bourbakifs predecessor.- The "Mistral" in the "Crown".- How academicians were elected and eliminated.- From the history of French economy.- The origins of mathematics: from Greece to Egypt.- Motivation for mathematical education in Israel.- Struggles against foreigners and their languages.- "Our Manchuria".- Religion and science, Martin Luther and anti-semitism.- Ramanujan and Hardy.- Catching a pike in Cambridge.- Locust swarming and relocation of deer.- Tamil Tigers at the Swiss consulate in Paris.- Picking cranberries.- The Yamal peninsula and digging caves in the snow.- Brain tomography, geometry, and algebra.- Inedible hares.- A question about the bitch of Rabinovitch.- The cemetery at Aksinfino

Bemelmans, J.; Binder, C.; Chatterji, S.D.; Hildebrandt, S.;
Purkert, W.; Schmeidler, F.; Scholz, E. (Hrsg.)

Felix Hausdorff - Gesammelte Werke Band 5

Astronomie, Optik und Wahrscheinlichkeitstheorie
Bandwerk Felix Hausdorff - Gesammelte Werke

2006, XVI, 938 S., Geb.
ISBN-10: 3-540-30624-2
ISBN-13: 978-3-540-30624-5

Uber dieses Buch

Band 5 umfast die Themenbereiche Astronomie, Optik und Wahrscheinlichkeitstheorie. Er enthalt Hausdorffs Dissertation uber die Refraktion des Lichtes in der Atmosphare, zwei Folgearbeiten zum gleichen Thema sowie die Habilitationsschrift uber die Extinktion des Lichtes in der Atmosphare. Es folgt eine Arbeit uber geometrische Optik, die unmittelbar an die beruhmte Publikation von H. Bruns uber das Eikonal anschliest und in der Hausdorff die damals ganz neuen Lieschen Theorien fur die Optik nutzbar zu machen suchte.

Auf dem Gebiet der Stochastik veroffentlichte Hausdorff zwei langere Arbeiten, die in verschiedenen Bereichen der Versicherungsmathematik und der Wahrscheinlichkeitsrechnung ihre Spuren hinterlassen haben. Von besonderem historischen Interesse sind die im Band publizierten Stucke aus Hausdorffs Nachlas, etwa seine Vorlesung "Wahrscheinlichkeitsrechnung" vom Sommersemester 1923 oder seine Briefe an Richard von Mises aus dem Jahre 1919.

Inhaltsverzeichnis

Teil I. Astronomie und Optik. - A. Veroffentlichte Arbeiten.- Zur Theorie der astronomischen Strahlenbrechung (Dissertation).- Zur Theorie der astronomischen Strahlenbrechung II, III.- Uber die Absorption des Lichtes in der Atmosphare (Habilitationsschrift).- Infinitesimale Abbildungen der Optik.- B. Arbeiten aus dem Nachlas.- Die Vorlesung "Figur und Rotation der Himmelskorper (1895/96).- Hausdorffs Notizen uber mittlere Bewegung.- Teil II. Wahrscheinlichkeitstheorie.- A. Veroffentlichte Arbeiten.- Das Risiko bei Zufallsspielen.- Beitrage zur Wahrscheinlichkeitsrechnung.- W. Grossmann: Versicherungsmathematik (Besprechung).- W. Kitt: Grundlinien der politischen Arithmetik (Besprechung).- B. Arbeiten aus dem Nachlas.- Vorlesung "Wahrscheinlichkeitsrechnung" (1923).- [Rademacher-Funktionen].- [Asymptotische Verteilung der Ziffern in einem g-adischen Bruch].- [Starkes Gesetz der grosen Zahl; Cantor-Darstellung reeller Zahlen].- [Grose Abweichungen].- Kettenbruche.- Iterationen.- Verscharfung der Tschebyscheffschen Ungleichung.- [Gleichheit f.u. von Zufallsvariablen; Unabhangigkeit].- Kai-Lai Chung, Sur un theoreme de M. Gumbel.- Zwei Briefe Felix Hausdorffs an Richard von Mises.- Anhang.- Christian Huygens' nachgelassene Abhandlungen: Uber die Bewegung der Korper durch den Stos. Uber die Centrifugalkraft. Herausgegeben und mit Anmerkungen versehen von Felix Hausdorff.- Personenregister.- Sachregister.

Kabe, D.G., Gupta, A.K.

Experimental Designs: Exercises and Solutions

2006, VIII, 300 p., 3 illus., Softcover
ISBN-10: 0-387-33892-6
ISBN-13: 978-0-387-33892-7

About this book

This volume provides a collection of exercises together with their solutions in design and analysis of experiments. The theoretical results, essential for understanding, are given first. These exercises have been collected during the authors teaching courses over a long period of time. These are particularly helpful to the students studying the design of experiments and instructors and researchers engaged in the teaching and research of design by experiment.

Table of contents

Theoretical results.- Exercises.- Solutions.

Bix, Robert

Conics and Cubics, 2nd ed.
A Concrete Introduction to Algebraic Curves

Series: Undergraduate Texts in Mathematics
2006, VIII, 352 p., 151 illus., Hardcover
ISBN-10: 0-387-31802-X
ISBN-13: 978-0-387-31802-8

About this textbook

Conics and Cubics is an accessible introduction to algebraic curves. Its focus on curves of degree at most three keeps results tangible and proofs transparent. Theorems follow naturally from high school algebra and two key ideas, homogeneous coordinates and intersection multiplicities.

By classifying irreducible cubics over the real numbers and proving that their points form Abelian groups, the book gives readers easy access to the study of elliptic curves. It includes a simple proof of Bezoutfs Theorem on the number of intersections of two curves.

The book is a text for a one-semester course. The course can serve either as the one undergraduate geometry course taken by mathematics majors in general or as a sequel to college geometry for prospective or current teachers of secondary school mathematics. The only prerequisite is first-year calculus.

The new edition additionally discusses the use of power series to parametrize curves and analyze intersection multiplicities and envelopes.

Table of contents

Intersection of Curves.- Conics.- Cubics.- Intersection Properties.- References.- Index.

Arnold, Vladimir I.

Ordinary Differential Equations, 2nd printing,

Series: Universitext
Original Russion edition published by Nauka, Moscow, 1984
1st ed 1992. 2006, IV, 334 p., 272 illus., Softcover
ISBN-10: 3-540-34563-9
ISBN-13: 978-3-540-34563-3

About this textbook

There are dozens of books on ODEs, but none with the elegant geometric insight of Arnol'd's book. Arnol'd puts a clear emphasis on the qualitative and geometric properties of ODEs and their solutions, rather than on theroutine presentation of algorithms for solving special classes of equations.Of course, the reader learns how to solve equations, but with much more understanding of the systems, the solutions and the techniques. Vector fields and one-parameter groups of transformations come right from the startand Arnol'd uses this "language" throughout the book. This fundamental difference from the standard presentation allows him to explain some of the real mathematics of ODEs in a very understandable way and without hidingthe substance. The text is also rich with examples and connections with mechanics. Where possible, Arnol'd proceeds by physical reasoning, using it as a convenient shorthand for much longer formal mathematical reasoning. This technique helps the student get a feel for the subject. Following Arnol'd's guiding geometric and qualitative principles, there are 272 figures in the book, but not a single complicated formula. Also, the text is peppered with historicalremarks, which put the material in context, showing how the ideas have developped since Newton and Leibniz. This book is an excellent text for a course whose goal is a mathematical treatment of differential equations and the related physical systems.

Peter Topping / University of Warwick

Lectures on the Ricci Flow

Series: London Mathematical Society Lecture Note Series (No. 325)
Paperback (ISBN-13: 9780521689472 | ISBN-10: 0521689473)

Hamilton's Ricci flow has attracted considerable attention since its introduction in 1982, owing partly to its promise in addressing the PoincarEconjecture and Thurston's geometrization conjecture. This book gives a concise introduction to the subject with the hindsight of Perelman's breakthroughs from 2002/2003. After describing the basic properties of, and intuition behind the Ricci flow, core elements of the theory are discussed such as consequences of various forms of maximum principle, issues related to existence theory, and basic properties of singularities in the flow. A detailed exposition of Perelman's entropy functionals is combined with a description of Cheeger-Gromov-Hamilton compactness of manifolds and flows to show how a 'tangent' flow can be extracted from a singular Ricci flow. Finally, all these threads are pulled together to give a modern proof of Hamilton's theorem that a closed three-dimensional manifold whichcarries a metric of positive Ricci curvature is a spherical space form.

* Presents the state of the art view of the subject
* Includes results not available in book form anywhere else
* Written in a style which makes it ideal for use in a graduate level course

Contents

1. Introduction; 2. Riemannian geometry background; 3. The maximum principle; 4. Comments on existence theory for parabolic PDE; 5. Existence theory for the Ricci flow; 6. Ricci flow as a gradient flow; 7. Compactness of Riemannian manifolds and flows; 8. Perelman's W entropy functional; 9. Curvature pinching and preserved curvature properties under Ricci flow; 10. Three-manifolds with positive Ricci curvature and beyond.