Zurich Lectures in Advanced Mathematics
ISBN 978-3-03719-067-8
September 2008, 153 pages, softcover, 17.0 x 24.0 cm.
Quantum dynamics of molecules poses a variety of computational challenges that are presently at the forefront of research efforts in numerical analysis in a number of application areas: high-dimensional partial differential equations, multiple scales, highly oscillatory solutions, and geometric structures such as symplecticity and reversibility that are favourably preserved in discretizations.
This text addresses such problems in quantum mechanics from the viewpoint of numerical analysis, illustrating them to a large extent on intermediate models between the Schrodinger equation of full many-body quantum dynamics and the Newtonian equations of classical molecular dynamics. The fruitful interplay between quantum dynamics and numerical analysis is emphasized.
Table of contents
EMS Series of Congress Reports
ISBN 978-3-03719-062-3
September 2008, 722 pages, hardcover, 17.0 x 24.0 cm.
This book is concerned with recent trends in the representation theory of algebras and its exciting interaction with geometry, topology, commutative algebra, Lie algebras, quantum groups, homological algebra, invariant theory, combinatorics, model theory and theoretical physics. The collection of articles, written by leading researchers in the field, is conceived as a sort of handbook providing easy access to the present state of knowledge and stimulating further development.
The topics under discussion include diagram algebras, Brauer algebras, cellular algebras, quasi-hereditary algebras, Hall algebras, Hecke algebras, symplectic reflection algebras, Cherednik algebras, Kashiwara crystals, Fock spaces, preprojective algebras, cluster algebras, rank varieties, varieties of algebras and modules, moduli of representations of quivers, semi-invariants of quivers, Cohen?Macaulay modules, singularities, coherent sheaves, derived categories, spectral representation theory, Coxeter polynomials, Auslander?Reiten theory, Calabi?Yau triangulated categories, Poincare duality spaces, selfinjective algebras, periodic algebras, stable module categories, Hochschild cohomologies, deformations of algebras, Galois coverings of algebras, tilting theory, algebras of small homological dimensions, representation types of algebras, model theory.
The book consists of fifteen self-contained expository survey articles and is addressed to researchers and graduate students in algebra as well as a broader mathematical community. They contain a large number of open problems and give new perspectives for research in the field.
Table of contents
EMS Series of Congress Reports
ISBN 978-3-03719-060-9
October 2008, 454 pages, hardcover, 17.0 x 24.0 cm.
Since its inception 50 years ago, K-theory has been a tool for understanding a wide-ranging family of mathematical structures and their invariants: topological spaces, rings, algebraic varieties and operator algebras are the dominant examples. The invariants range from characteristic classes in cohomology, determinants of matrices, Chow groups of varieties, as well as traces and indices of elliptic operators. Thus K-theory is notable for its connections with other branches of mathematics.
Noncommutative geometry develops tools which allow one to think of noncommutative algebras in the same footing as commutative ones: as algebras of functions on (noncommutative) spaces. The algebras in question come from problems in various areas of mathematics and mathematical physics; typical examples include algebras of pseudodifferential operators, group algebras, and other algebras arising from quantum field theory.
To study noncommutative geometric problems one considers invariants of the relevant noncommutative algebras. These invariants include algebraic and topological K-theory, and also cyclic homology, discovered independently by Alain Connes and Boris Tsygan, which can be regarded both as a noncommutative version of de Rham cohomology and as an additive version of K-theory. There are primary and secondary Chern characters which pass from K-theory to cyclic homology. These characters are relevant both to noncommutative and commutative problems, and have applications ranging from index theorems to the detection of singularities of commutative algebraic varieties.
The contributions to this volume represent this range of connections between K-theory, noncommmutative geometry, and other branches of mathematics.
Table of contents
Zurich Lectures in Advanced Mathematics
ISBN 978-3-03719-054-8
August 2008, 143 pages, softcover, 17.0 x 24.0 cm.
The book discusses several selected topics of a new emerging area of research lying on the interface between topology and engineering. The first main topic of the book is topology of configuration spaces of mechanical linkages. These manifolds arise in various fields of mathematics and in other sciences, e.g. engineering, statistics, molecular biology. To compute Betti numbers of these configuration spaces we apply a new technique of Morse theory in the presence of an involution. A significant result of topology of linkages presented in the book is a solution of a conjecture of Kevin Walker which states that the relative sizes of bars of a linkage are determined, up to certain equivalence, by the cohomology algebra of the linkage configuration space. The book also describes a new probabilistic approach to topology of linkages which treats the bar lengths as random variables and studies mathematical expectations of Betti numbers. The second main topic of the book is topology of configuration spaces associated to polyhedra. The book gives an account of a beautiful work of S.R. Gal suggesting an explicit formula for the generating function encoding Euler characteristics of these spaces. Next we study the knot theory of a robot arm focusing on a recent important result of R. Connelly, E. Demain and G. Rote. Finally, the book investigates topological problems arising in the theory of robot motion planning algorithms and studies the homotopy invariant TC(X) measuring navigational complexity of configuration spaces.
The book is intended as an appetizer and will introduce the reader to many fascinating topological problems motivated by engineering.
Table of contents
Zurich Lectures in Advanced Mathematics
ISBN 978-3-03719-052-4
September 2008, 199 pages, softcover, 17.0 x 24.0 cm.
This is a self-contained exposition of several core aspects of the theory of rational polyhedra with a view towards algorithmic applications to efficient counting of integer points, a problem arising in many areas of pure and applied mathematics. The approach is based on the consistent development and application of the apparatus of generating functions and the algebra of polyhedra. Topics range from classical, such as the Euler characteristic, continued fractions, Ehrhart polynomial, Minkowski Convex Body Theorem, and the Lenstra? Lenstra?Lovasz lattice reduction algorithm, to recent advances such as the Berline?Vergne local formula.
The text is intended for graduate students and researchers. Prerequisites are a modest background in linear algebra and analysis as well as some general mathematical maturity. Numerous figures, exercises of varying degree of difficulty as well as references to the literature and publicly available software make the text suitable for a graduate course.
Table of contents