Ricardo A. Saenz : Universidad de Colima, Colima, Mexico

Introduction to Harmonic Analysis

Softcover ISBN: 978-1-4704-7199-6
Product Code: STML/105
Expected availability date: August 14, 2023
Student Mathematical Library
IAS/Park City Mathematics Subseries
Volume: 105

Book Details

This book gives a self-contained introduction to the modern ideas and problems of harmonic analysis. Intended for third- and fourth-year undergraduates, the book only requires basic knowledge of real analysis, and covers necessary background in measure theory, Lebesgue integration and approximation theorems.

The book motivates the study of harmonic functions by describing the Dirichlet problem, and discussing examples such as solutions to the heat equation in equilibrium, the real and imaginary parts of holomorphic functions, and the minimizing functions of energy. It then leads students through an in-depth study of the boundary behavior of harmonic functions and finishes by developing the theory of harmonic functions defined on fractals domains.

The book is designed as a textbook for an introductory course on classical harmonic analysis, or for a course on analysis on fractals. Each chapter contains exercises, and bibliographic and historical notes. The book can also be used as a supplemental text or for self-study.

Readership

Undergraduate and graduate students interested in Fourier analysis and harmonic analysis.

Table of contents

Scott A. Taylor : Colby College, Waterville, ME

Introduction to Mathematics: Number, Space, and Structure

Softcover ISBN: 978-1-4704-7188-0
Expected availability date: September 28, 2023
Pure and Applied Undergraduate Texts Volume: 62

Book Details

This textbook is designed for an Introduction to Proofs course organized around the themes of number and space. Concepts are illustrated using both geometric and number examples, while frequent analogies and applications help build intuition and context in the humanities, arts, and sciences. Sophisticated mathematical ideas are introduced early and then revisited several times in a spiral structure, allowing students to progressively develop rigorous thinking. Throughout, the presentation is enlivened with whimsical illustrations, apt quotations, and glimpses of mathematical history and culture.

Early chapters integrate an introduction to sets, logic, and beginning proof techniques with a first exposure to more advanced mathematical structures. The middle chapters focus on equivalence relations, functions, and induction. Carefully chosen examples elucidate familiar topics, such as natural and rational numbers and angle measurements, as well as new mathematics, such as modular arithmetic and beginning graph theory. The book concludes with a thorough exploration of the cardinalities of finite and infinite sets and, in two optional chapters, brings all the topics together by constructing the real numbers and other complete metric spaces.

Designed to foster the mental flexibility and rigorous thinking needed for advanced mathematics, Introduction to Mathematics suits either a lecture-based or flipped classroom. A year of mathematics, statistics, or computer science at the university level is assumed, but the main prerequisite is the willingness to engage in a new challenge.

Readership

Appropriate for an Introduction to Proofs course and for undergraduate students interested in mathematical thinking and language.

Harry Dym : Weizmann Institute of Science, Rehovot, Israel

Linear Algebra in Action: Third Edition

Hardcover ISBN: 978-1-4704-7206-1
Expected availability date: September 27, 2023
Graduate Studies in Mathematics Volume: 232;
2023; 485 pp
MSC: Primary 15; 30; 34; 39; 46; 47; 52; 93;

Book Details

This book is based largely on courses that the author taught at the Feinberg Graduate School of the Weizmann Institute. It conveys in a user-friendly way the basic and advanced techniques of linear algebra from the point of view of a working analyst. The techniques are illustrated by a wide sample of applications and examples that are chosen to highlight the tools of the trade. In short, this is material that the author has found to be useful in his own research and wishes that he had been exposed to as a graduate student.

Roughly the first quarter of the book reviews the contents of a basic course in linear algebra, plus a little. The remaining chapters treat singular value decompositions, convexity, special classes of matrices, projections, assorted algorithms, and a number of applications. The applications are drawn from vector calculus, numerical analysis, control theory, complex analysis, convex optimization, and functional analysis. In particular, fixed point theorems, extremal problems, best approximations, matrix equations, zero location and eigenvalue location problems, matrices with nonnegative entries, and reproducing kernels are discussed.

This new edition differs significantly from the second edition in both content and style. It includes a number of topics that did not appear in the earlier edition and excludes some that did. Moreover, most of the material that has been adapted from the earlier edition has been extensively rewritten and reorganized.

Readership

Undergraduate and graduate students and researchers interested in learning and teaching linear algebra with an emphasis on concrete algorithms.

Table of contents

Aleksey Kostenko University of Ljubljana, Slovenia; and University of Vienna, Austria
Noema Nicolussi University of Vienna, Austria

Laplacians on Infinite Graphs

Overview

The main focus in this memoir is on Laplacians on both weighted graphs and weighted metric graphs. Let us emphasize that we consider infinite locally finite graphs and do not make any further geometric assumptions. Whereas the existing literature usually treats these two types of Laplacian operators separately, we approach them in a uniform manner in the present work and put particular emphasis on the relationship between them. One of our main conceptual messages is that these two settings should be regarded as complementary (rather than opposite) and exactly their interplay leads to important further insight on both sides. Our central goal is twofold. First of all, we explore the relationships between these two objects by comparing their basic spectral (self-adjointness, spectral gap, etc.), parabolic (Markovian uniqueness, recurrence, stochastic completeness, etc.), and metric (quasi isometries, intrinsic metrics, etc.) properties. In turn, we exploit these connections either to prove new results for Laplacians on metric graphs or to provide new proofs and perspective on the recent progress in weighted graph Laplacians. We also demonstrate our findings by considering several important classes of graphs (Cayley graphs, tessellations, and antitrees).

Publication Date: 27 April 2023
ISBN print 978-3-98547-025-9
Softcover, 240 pages, 17cm x 24cm

Table of Contents